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INTRODUICTION

The objective of the research reported herein was to improve the

"robustness" of the procedure used for the numerical evaluation of the

"bounding surface" plasticity model for cohesive soils.

The bounding surface model for soils was developed and extensively

evaluated under U.S. Navy and NSF sponsorship (1-9). This ,elopment

included the numerical evaluation of the model and the writ' of a mas-

ter subroutine (and associated subroutines) CLAY that can J incorpo-

rated into existing finite element codes to supply the ncremental

material properties needed in the analysis of cohesive soil structures

(2,5,7). During the original development phase emphasis was placed on

demonstrating the capabilities of the model for representing real soil

behavior and on the accuracy of the numerical evaluation scheme, with

little attention given to the robustness of the numerical evaluation

(i.e., the robustness of CLAY). CLAY was incorporated into several new

and existing finite element programs and was used in the analysis of a

number of Geotechnical engineering problems. During the course of these

studies several instances occurred in which the numerical evaluation

scheme embedded in CLAY was far from robust.

In all cases the problem involved, for one or more elements, the

predicted stress state converging to a point outside of the bounding

surface. A simple scaling procedure had been incorporated into CLAY in

an attempt to avoid such an occurrance, however, in many cases it proved

to be ineffective. Once the stress state had fallen outside of the

bounding surface (at the end of a given solution step), in subsequent

steps the solution rapidly deteriorated and soon became meaningless and

very often convergence could not be achieved (even to an incorrect

solution). Using the original version of CLAY the only remedy was to
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use smaller global solution increments. In order to achieve an accepta-

ble solution, for many problems, the required solution steps were exces-

sively small and thus the computer costs were excessively large.

The goal of the present research was to understand and to rectify

this problem, i.e., to develop a truely robust version of CLAY.

Robustness requires that if reasonably sized solution steps are taken,

that accurate results be obtained. Of course in general, accurate one

step solutions cannot be achieved with a path dependent material proper-

ties model. However, the use of very large steps leading to answers

which are qualitatively but not quantitatively correct is often useful

* for a preliminary analysis. Thus, even if ridiculously large solution

steps are attempted, a robust routine should produce reasonable (if not

entirely accurate) results. Neither of these conditions was met with

the original version of CLAY.

PRELIMINARIES

The bounding surface model can be used to supply material properties

for all solution schemes applicable to stress analysis problems. The

most commonly used method is the finite element procedure; of the three

(displacement, force and mixed) finite element formulations available,

the displacement method is most commonly used. Thus, for the remainder

of this report it is assumed that the bounding surface model is being

used in conjunction with a displacement (or a reformulated mixed [Em)

finite element analysis. Most of the comments, however, also apply to

other methods, e.g., displacement formulation finite difference

analyses,etc. In the following paragraphs the finite element code, for

which the material properties subroutine (CLAY) is to supply material

properties, is called the "parent" program.

0
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The use of a history dependent constitutive model (such as bounding

surface plasticity) in a stress analysis program, in general, requires

some form of incremental solution procedure. In addition, if the model

is nonlinear, then in order to be able to employ reasonably sized solu-

tion steps, iteration within each step is usually necessary. The itera-

tion of the total solution by the parent finite element program, will be

referred to as "global" iteration.

For a given point in the body under analysis, and for a given itera-

tion K of a given solution step N, the role of a "properties"

subroutine, such as CLAY, is to supply to the parent program the

relaionship between the stress increment {Aa} and the strain increment

{Aej}. The bounoing surface model relates "effective" soil stress to

strain and, thus, throughout this section {a} and {Aa} will represent

effective stresses. The fact that the parent program maybe concerned

with total stresses will be addressed in a later section. The collec-

tion of points (locations) in the body for which-the incremental proper-

ties are required usually consists of all the element centers or all the

element integration points or all the nodes. The following analysis is

in no way dependent on which set of points is being used, however, for

simplicity of discussion it is assumed that a set of properties is

required for each element. The required incremental stress-strain equa-

tion is usually written in the form*:

-{Aa}N,K  [I ]N,K-1 {Ae}N,K + (1)

*For a "force" (stress) based analysis, the required relationship is

{A} = Ec] {Aa} + {AC0 }

This expression could be found by inverting eq. 1; however, it would be
more economical to re-do the numerical evaluation scheme in CLAY so as to
arrive directly at the required expression.

* 3



For simplicity, in the remainder of the report, the above expression

will be written without explicitly displaying the increment and itera-

tion numbers, i.e.

{to} = [o] {Ac} + {Ao1 (2)

Thus, the role of the properties subroutine, CLAY, (for a given glo-

bal iteration of a given solution increment and for a given element) is

to provide the quantities [5] and {A 0 }. For a nonlinear model they will

be functions of {Aa} and {Ac}, thus the requirement for global itera-

- tion. Typically the parent finite element program supplies an estimate

(from the previous iteration) of {Ae} and an estimate of {Aa} is founa

using eq. 2 and the properties from the previous iteration (or previous

increment for the first iteration); these estimates-are used by the pro-

perties subroutine in the calculations of ] and {Aco} - Now until glo-

bal convergence occurs, these estimates (for the given element) of the

stress and strain increments (used in the calculation of the incremental

properties) will not in general satisfy the resulting incremental

stress-strain equation, (2). Since this inconsistency disappears as

* global convergence takes place, it is not absolutely necessary to take

special steps to rectify it. However, numerical experimentation has demon-

strated that overall computational advantages may be realized by resolv-

ing it (5,7). For this purpose, "local iteration" can be introduced.

Local iteration takes place (for each element) within the material prop-

erty subroutine (i.e., within CLAY) and involves using eq. 2 and the

4



original strain estimate to calculate a new estimate of the stress*

which in turn is used to find a new set of incremental properties, etc.

The local iteration is in addition to the global iteration. Since the

global iteration also tends to remove the inconsistency, the convergence

criterion for local iteration Is typically less restrictive than the

global requirement. Obviously the introduction of local iteration

increases the computational effort for a given global iteration.

However, its use typically decreases the number of global iterations

required, resulting in an overall reduction of computational effort.

The calculations involved in finding [D-] and {6} will be discussed

in the next section.

MODIFICATIONS TO "CLAY"

The first step was to determine the cause of the lack of robustness

of the numerical evaluation scheme used in CLA~Y. It was found that

there were two primary reasons. The first was numerical integration

error that occurred for large (and sometimes small) steps. The second

was the inadequacy of the scaling procedure used to return a predicted

stress state to the bounding surface when '.t fell outside. When the

solution steps were small enough (sometimes exceedingly so) both of

* these problems disappeared and the original algorithm functioned pro

perly. The question then was how to improve the evaluation scheme.

*A alternative which has not been explored by the author for the bound-
ing surface model is to maintain the initial stress estimate and itera-

*tively modify the strain estimate. The iterative modification of the
strain estimate instead of the stress estimate maintains, at the global
level, a compatible global displacement field. The rationale for this
choice is. the displacement continuity requirement of "displacement for-
mulation" finite element procedures. The violation of this condition
does not, however, necessarily destroy the convergence characteristics

* of a displacement formulation; the effect it would have in this case has
not been investigated. It should be noted that the present local itera-
tion scheme (which iteratively modifies the stress estimate) would vio-
late the equilibrium requirement of a "force" formulation finite element
analysis.



The bounding surface plasticity model leads to the following rela-

tionship between the stress and strain rates (see eq. 4 of reference

7):

{} = 01 . (3)

For a precise definition of the quantity [D], for the bounding surface

model, the reader is referred to eq. 5 of reference 7. Because [] is a

function of the history of the stress state over the interval, for any

given solution step this equation is nonlinear (and thus its use, in

general, will require iteration One way of proceeding is to integrate

over the step t N- -).tN (in performing this operation it is convenient to

think in terms of time even though the particular model may be rate

independent), i.e.,

t & dt [o]( } dt (4)

N-i N-i

If it is assumed, for the given solution step, that all the strain com-

ponents are proportional (i.e, AEij/AC 1 = constant for t N 1  t : tN

then for a rate independent model the input history for the interval can

be selected such that all components of { } are constant* and are given

by {€}={Ae}/AtN, hence

tN dt (5)

-AtN J

tN-I

*If there are pore water pressure changes due to water flow, then even
for a rate independent model and proportionate strain increments, this

step will involve an approximation. This approximation occurs because
the assumption of a constant strain rate over the interval would not
necessarily be consistant with the actual history of the water movement.

* 6



letting

4t

C]N [0] dt (6)

AtN t J
N-1

then gives

} [5]{Ae} (7)

To this point no approximations other than those mentioned above have

been made. Thus what is needed is an accurate evaluation of the avera-

age value of [D] over the solution increment. Previously, [2,5,71 the

simple one step trapezoidal rule was used, i.e.,

S {[] + [o] N  (8)

W1 2AtN N-i N()

where ]I and [D] are the values of [D] that correspond to theN-1 N

stress and strain states at the beginning and end of the step, respec-

tively. It must be noted that in reality [D] - 1_is also a function of

{a}N (and hence {Aa}) because the latter quantity determines whether or

not "loading" or "unloading" occurs over the interval.

The previously cited lack of robustness has made it evident that in

some instances this simple numerical integration is not adequate.

A promising "adaptive" two point integration method was tried but

failed to converge. Resort was then made to the multi-step (of equal

length) trapezoidal rule*.

*While the multi-step trapezoidal rule has proven to be quite effective

it is not the most efficient scheme available. Thus, in some future
research the use of other integration schemes should be explored. It
would seem to be desirable that the end points of the interval be
included in the set of integration points (because the corresponding
stress states explicitly occur in the incremental formulation). Thus
Simpson's rule and the Gaussian quadrature method that includes the end
points (Lobatto quadrature) would appear to be the most promising can-
didates.

- -
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The limit to the accuracy achieved with any improved integration

scheme is the required assumption (see derivation above) that the strain

components vary proportionately ana their rates are constant over the

solution step.

In the following discussion the solution step prescribed by the par-

ent program (the finite element program that is calling CLAY) will be

referred to as the "step". If required, for accurate numerical integra-

tion, the algorithm in the new CLAY may further subdivide this step into

"sub-steps". These sub-steps, however, will be transparent to the par-

,- ent program and to the user (except for increased computer cost).

The use of M sub-steps in the trapezoidal rule leads to the follow-

ing incremental properties

M

] = ]m (9)
-m= m

The incremental properties CDEm, over sub-step m, are found from eq. 8

where E] N- and [D] N which are the values of [D] at times tN- and tN

are replaced by properties corresponding to times; (tNl, tNl I + AtN/M) ,

(t + AtN/M, t + 26tN/M) , etc. ana At is replaced by At /M TheN-i N' N-I N' N Nt"lM

strain at time tN- 1 + m AtN/M is assumed to be (see previous paragraphs

discussing the assumptions made)

{c}m * NN-1 (10)

The stress estimate at the corresponding time is initially (in the first

local iteration) taken to be:

{ ,} {a}m rA-1 {{}N + A} { 1

'm ri- - {}N- - (11)

J.8

* 8-% - -. ,. ., -. -'., L- .''''"'" , ' "' . ,," ' '-". ' ." ".".r, , .. ."-' ¢"."-"- -.



That is, an estimate equal to the value found in the previous sub-step

is used for ({Aal m. When local iteration is used, then this is succes-

sively modified by replacing {Aa} - with improved estimates calculated

from eq. 7 (using {Ael} and [Di from the previous local iteration)3.

The determination of the number of sub-steps (for a given element)

to be used in each solution step is based upon the following con-

sideration. It was noted previously that a symptom of inaccurate

numerical integration is the prediction of a stress state outside of the

bounding surface. The factor that measures this phenomenon is 8 which

relates the image stress state U.. to the actual stress state a j(see

Figure 1), i.e.,

UUJ - fadl) = WoJ - {ad) (12)

The image stress state is defined by the intersection of the projection

line with the bounding surface. The projection line originates at the

projection center (see Figure 1) and passes through the stress state.

For the current model the projection center lies on the I axis and is

located at cI 0 (see Figure 2). The size of the bounding surface is

determine by the current value of 1 0 (see [7]). It is seen from Figure

1 and eq. 12 that a value of 8 of less than 1.0 indicates a stress state

{a} which lies outside of the bounding surface.

In a given global iteration, an initial attempt is made to use one

step integration. If the value of 8, for the calculated stress state at

the end of the solution step is greater or only slightly less than 1.0

(> 0.999 *), then it is assumed that no problem exists and one step tra-

*A number of rather arbitrary limits such as this have been used in the
new version of CLAY. Some numerical experimentation was done to show
that the values are adequate, however, future work should investigate a
range of alternatives in an attempt to optimize the quantities.
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pezoidal integration is used as in the past (2,5,7). When this crite-

rion is not satisfied the new CLAY attempts to use two sub-steps in the

integration process. If at the end of either the first or second sub-

step the 8 does not satisfy the > 0.999 criterion, the suo-step is again

halved (i.e. four sub-steps) and the integration is started again (using

one quarter of the initial stress estimate for the beginning of the glo-

bal iteration). This process is continued until either the criterion is

met or a limit of a maximum of 32 sub-steps is reached. In the latter

case the solution process is then continued as if the limit on 8 had

been satisfied. Denote the number of sub-steps (for the given element)

arrived at by this process as M (M = I or 2 or 4 .... 32).

Once, sub-stepping is used, it is used for ail subsequent global

iterations for that solution step and for the particular element in

question. As global iteration proceeds, the value of M (number of sub-

steps) is not permitted to decrease but it may be increased.* However,

in the first global iteration of the next solution step (for the given

element) once again one step integration is attemped (i.e., M is reset

to 1). The number of sub-steps used (M), is remembered by CLAY (the

mechanism will be explained later).

Within each sub-step local iteration is used** to determine the

value of {ti}. The local iteration is continued until the value of 8

for the end of the sub-step meets a i% convergence criterion or a limit

*Initially a rather sophisticated scheme was tried in which the several

*_ sub-steps into which the step was divied could be of varying length and
the number of sub-steps could vary from one to a set maximum as needed.
At the beginning of each global iteration the number of sub-steps was
started at one, thus the sub-stepping pattern could (and did) change
from global iteration to global iteration; the resulting process had
poor convergence characteristics (due to the changing sub-stepping

S--pattern) and was thus abandoned.

** Thus the control over local iteration is no longer left to the User
as in the previous version of CLAY.
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of a maximum of 5 local iterations is reached. At least two local inter-

actions are always performed (the first calculation of 8 is counted as

iteration number one). Because of the local iteration, the initial

estimate for fao} is not overly important and a value of zero could be

used if desired.

The need for an adequate procedure for returning a predicted stress

state that is outside of the bounding surface to the surface still

exists, even though a more accurate integration scheme has been adopted.

Such a need persists because of the use of the 0.999 limit on 8 instead

of 1.0, the maximum of 32 placed on the number of sub-steps for a given

solution step, and for the intermediate calculations in the local itera-

tion process. The limits on 8 and M are used to avoid excessive sub-

stepping and thus excessive computational cost.

Classical "radial return" (11) has been adopted to bring a point

back to the bounding surface (while the previously used scheme in CLAY

was based on the radial return concept, it was only approximate).

Whenever a stress state (at the beginning of the step, or at the end of

the step or ore of the sub-steps) is found to be outside of the bound it

is scaled back to the bound (along the line connecting it to the projec-

tion center). This scaled stress state is used for the purpose of cal-

culating the plastic modulus.

The one instant where the scaled va'wue of the stress is not used

is in the updating of the size of the bounding surface as determined by

the value of 1I (see eq. (26) of reference 7). The extreme importance

of using the unscaled stress for this operation appears to stem from the

fact that the size of its bounding surface is really controlled by

strain considerations and the strains are not scaled.

i'I1G



The scaling of the invariants of the stress (the invariants are

defined in eq. 20 of (2)) yields,

Iscaled = 8(I - clo) + Clo

Jscaled = 8 J (13)

Sscaled = 83S

When the stress state at the beginning of the step {a}N-1 is outside

of the bound, it is of considerably more concern than the corresponding

problem for the state at the end of a step or sub-step. The state at

the beginning of the step is an accepted solution (to that point in

time), whereas at the end of a step it is merely an intermediate predic-

tion in the iteration process. The discrepancy at the beginning of the

step represents an error which has crept into the solution, whereas at

the end of a step it is only a potential error. In an attempt to pre-

vent error build-up (as incremental stresses are accumulated), if the

stress state at the beginning of the step is found to be oustide of the

bound, the individual components are then scaled back to the bound,

i.e.,:

{O}N 1scaled = (a{}NI + (1 - 8){c} (14)

and a stress correlation vector {Aa0 } is calculated

{A0} = - (1-)({a} - (c}) (15)

1 Twhere {c} = - clo < 1,1,1,0,0,0 >•

J. This stress correction is incorporated into the gloLal analysis by

treating it as a strain independent stress term, i.e., by modifying eq.

* 7 to read (i.e., the form is that of eq. 2):

{Aa} = [5] {Ac} + {Aao} (16)

12



The use of the stress correction vector prevents a gradual

"straying" outside of the bounding surface for cases where the state

should be moving on the surface. Equation (16) is only used at the glo-

bal level because in CLAY the correction represented by ~ao 0 1 1s

directly achieved by the scaling of {} 4 ;i.e., 3ll ooerations vithin

CLAY use eq. (7).

I For the purpose of calculating DJ, the scaling of the stress states

back to the bounding surface is of major importance, however, thne incor-

*.poration of the stress correction vector {Aao 0 into the global analysis

can be neglected with only relatively minor consequences.

Situations can arise where the one step trapezoidal rule is not ade-

quate, even though it does not result in obviously incorrect values of

8. An example of such a problem area is a nearly neutral loading situa-

tion where inaccurate integration may predict "loading" when "unloading"

should occur or vise-versa. To avoid inaccurate integration, in

general, a second sub-stepping criterion is imposed. The ratio n

LmIA is required to be less than 0.01, where L M and L n are the sums of

the absolute values of the calculated stress components at the end of

the increment with different numbers of sub-steps (i.e. 1 and 2 or 2 and

4, etc). This criterion will obviously always require at least 2 sub-

steps. As noted above, an upper limit of 32 on the number of sub-steos

is imposed.

* IMPLEMENTATION OF CLAY

Subroutine CLAY, along with Its supporting subroutines, (listed in

Appendix I) is intended to be incorporated into new and existing finite

* element (or finite difference) programs in order to supply the incre-

mental material properties for cohesive soils as predicted by the bound-

Ing surface plasticity model. First some general comments concerning

13



its use will be made, followed by specific instructions for its "call",

and finally some concluding remarks concerning the parent program and

the calculation of pore pressures.

Subroutine CLAY returns to the parent finite element program the

matrices N] and t], and the vectors {Aa} and {& 0}. The matrix [Di

and the vector {Aa }, as described above, relate the incremental stress

and strain vectors by means of eq. 2. The matrix [0] is the tangent

stiffness matrix (12) and is the value of [], (eq. 5 of reference 7)

at the end of the solution step.

If the global nonlinear solution scheme uses successive substitu

tion, only 0o] (and of course {Ao01) is needed (5,12). If the

Newton-Raphson method is being used then the Jacobian can be approxi-

mated by the expression (l-a) O] + a[D ]. When a=O the procedure

reverts to successive substitution and when a=l it yields the "tangent

stiffness" method*. For a quasi-Newton method (13) neither [0] nor [D ]

are needed (except for initiation of the approximate Jacobian and for

occasional updates, if used) and can be ignored. The incremental stress

{Aa}, however, is needed in the update formula and is calculated in CLAY

by the previously described integration process and is returned to the

parent program.

The CLAY\ "subroutine package" consists of the subroutine CLAY and

eight supporting subroutines. A.1 the subroutines in this package are

written in FORTRAN 77, thus taking advantage of the structuring offered

by the language. In keeping with modern programming practice, the

* Contrary to what is suggested in (12), studies performed by the
authors for one element problems have found the successive substitution
method to show somewhat better convergence characteristics than the tan-
gent stiffness method. The successive substitution method can be sig-
nificantly improved by using an adaptive convergence factor (7).

0@ 14



design of the package is quite modular and facilitates its incorporation

into new and/or existing finite element programs for the analysis of

earth structures.

To access the CLAY subroutine package a parent finite element pro-

gram needs to only call subroutine CLAY. This is done for each itera-

tion of each loading increment and for all points in the idealized earth

structure where the incremental properties are required (e.g., at ele-

ment centers or at quadrature points). The call involves the following

argument lists

CALL CLAY(INC,ITNO,ITYPE,KIND,LARGE,GAMMAPROP,STOR,SIG,EP,DSIG,DEP,U,

OLTAU,DBAR,DTAN,DSIGO)

0 The quantities INC, ITNO, ITYPE, KIND and LARGE are integer

variables, U, DLTAU, and GAMMA are real variables, and PROP, STOR, SIG,

EP, DSIG, DEP, DBAR, OTAN, and DSIGO are real arrays with the dimensions

(21), (6), (6), (6), (6), (6), (6,6), (6,6) and (6), respectively.

The arguments in the call statement are now discussed in detail.

For clarity, the order of discussion is changed slightly from that in

the subroutine call.

INC. Globai solution increment number (the first increment must be

numbered 1).

ITNO: Global iteration number (the first iteration in each increment

must be numbered i).

ITYPE: A flag indicating which form of the bounding surface is to be

used in the analysis (further details regarding the possible

forms of the surface are given in Appendix III).

PROP: A one-dimensional array containing the values of the model

parameters. At the point in the idealized earth structure for

which the incremental material properties are sought, these

15



I
parameters characterize the bounding surface plasticity model

for the soil. The parent finite element program must read and

store the values of the model parameters for each different

type of soil in the structure being analyzed, and then, for

each call to CLAY, present the appropriate values for the soil

at the point in question.

The model parameters are stored in the PROP array in the

following order : X, K, M Me/McI v or G, II , Iatm' Rc'

AC, T, R e /Rc, Ae/AC, c, s, m, hc, he/hc h2 a, w. That is,

PROP(l) = X, PROP(21) = w, etc. After the model parameters are

read into the parent program, but before the first call to

* CLAY, the values for Mc and p. must be converted to associated

quantities in invariant stress space. This is achieved by mul-

tiplying these parameters by 1//27 and 3, respectively. It is

suggested that subroutines RPROP and TCHECK, listed in Appendix

II, be incorporated into the parent finite element program for

the purpose of reading, echo printing and scaling the material

parameters. The input instructions for RPROP are given in

Appendix III along with a brief discussion of the new single

surface option for the bounding surface.

* STOR, This one-dimensional array is used to store the values of cer-

tain quantities (e.g., internal variables) which describe the

current state of the soil and parameters related to the evalua-

• tion of the model such as the number of sub-steps M. For a

given step in the analysis these values are unique to the point

in the structure under consideration (e.g., element centers).

* At the beginning of the analysis the parent program must ini-

*' tialize, for each point in question, the values of STOR(i) and

* A detailed discussion of the model parameters is given in ref. 6,7.
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STOR(5). STOR(1) must contain the initial value of the effec-

tive preconsolidation pressure (Io = 3p0 ), while the initial

value of the total void ratio (e ) must be stored in

STOR(5).* These values are not read by the material parameter

input subroutine (RPROP) because they will, in general, vary

from point to point within the deposit, even for a homogeneous

soil. After each call to CLAY, the values in STOR must be

stored by the parent program for each point in the earth struc-

ture for which the incremental properties are required. Prior

to each call to CLAY the appropriate values for the point in

question must be retrieved from storage (i.e., from a two-

dimensional array or from a disk file) and then presented to

the CLAY subroutine through the CALL.

SIGs This one-dimensional array contains the components of the

stress** at the beginning of the increment and must be supplied

to CLAY by the parent program. It corresponds to the vector

{a}Nl Compressive normal stresses are considered to be

positive.

EP: The components of the strains at the beginning of the increment

are storea in this one-dimensional array and must be supplied

to CLAY by the parent program. It corresponds to the vector

{E}N-1" Compressive normal strains are consioered to be posi-

tive.

DSIGs This one-dimensional array contains an estimate of the

stress" increment. It corresponds to the vector {Aa} N and is

.* calculated and returned to the parent program by CLAY.

*Note: When the new version of CLAY is introduced into finite element

programs SAC2 and SAC3 (9), the storage of the initial void ratio in
STOR(7) must be changed to STOR(5) in Subroutines GEOM and STIFNS.

Whether these are to be "total" or "effective" stresses is discussed
later.
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DEP: The estimate of the strain increment is contained in this one-

dimensional array. It corresponds to the vector f(AeN and is

supplied by the parent program.

U: This variable represents the pore oressure at the beginning of

the increment N-I. It corresponds to the quantity u,_-,

OLTAU: The estimate of the pore pressure increment is represented by

this variable. It corresponds to the quantity Au .

GAMMA: This variable is the combined bulk modulus () for the soil

particles and pore fluid (14)*.

KIND: The value assigned to this flag is determined by how saturated

conditions are modelled in the parent program.

* A value of zero is required when the special (mixed) formu-

lation for incompressible and nearly-incompressibie solids

(10,15) is used. In such instances, the pore pressure is

treated as a primary dependent variable at the global level.

Thus, the parent program calculates uN-I and AuN-1 at the glo-

*r bal level. Whether or not the parent program is required to

send them to CLAY (in u and DLATU) depends on whether it sends

total or effective stresses in SIG and OSIG (these possibili-

ties are explored in greater detail later). For such a for-

*mulation, the value of r (GAMMA) will be required by the parent

program and is supplied by CLAY.

When a conventional displacement formulation for compressi-

ble solids is used for idealized undrained conditions (14), (or

for unsaturated conditions where 1 is equal to zero), KIND is

set equal to one. In such cases, the only primary global vari-

0 ables are the displacements; the pore pressure is treated as a

Whether this quantity is supplied by the parent program or by CLAY is
discussed in the explanation of the variable KIND.
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secondary dependent variable. The CLAY subroutine calculates

the values of uN (M and Au (OLTAU), and supplies them toN-1 N

the main program for printing.

OBAR and

OTANt These arrays contain the estimates of the incremental stress-

strain properties [5] (see eq. 2) and the "tangent stiffness

matrix" [oh] respectively. For KIND = 1 these matrices have

been augmented by adding r to the matrix elements in the upper

left 3 x 3 corner (more details are given later; see also

7,14).

Subroutine CLAY calculates [N and Lo t and returns them

to the parent program. It is desirable, but not absolutely

necessary, that the parent program "remembers" the last [D-]

calculated for the point in question and returns it to CLAY in

the next call. This is similar to the requirement for STOR.

For the first iteration of the first solution step (and at

other instances for which the last calculated [6 ] is not

available) it should be set to zero.

DSIGO: This array contains the stress correction vector of eq. 2, i.e.

{Ao 01.

LARGE: The value of this flag depends on the definitions used for the

stresses and strains in the analysis. If engineering measures

of stresses and strains are used, LARGE is set equal to zero.

If true stresses and logarithmic (natural) strains are used,

LARGE is set equal to one.

Although the CLAY subroutine package determines three-dimensional

incremental stress-strain properties, it can also be used to supply pro-

perties for two-dimensional analyses. For a three-dimensional analysis

the ordering of the components in the stress (and strain) vector is

* 19



T

) ~ <x, ay, az, Txy, Txz , Tyz >

In order to use CLAY in conjunction with a two-dimensional analysis

the strain and stress vectors in the parent program must be expanded

into this form. For example, for an axisymmetric analysis the stress

and strain components are ordered in the following manners

<ar,Ogaz,1Tre,.Oo>T and <er,EEz,yr, 0, O>T

The indicated zero values must be supplied by the parent program for the

vectors {T}N' {E}N' and {AC}N .  The incremental stress-strain proper-

ties of interest are located in the upper left 4x4 corners of the 6x6

DBAR and OTAN arrays returned by the CLAY subroutine, etc.

For plane strain conditions the stress and strain vectors are

ordered in the following manner:

TT< Cry, yZ, Txy , 0, O> and <x Ey' O Yxy' 0, O>

The indicated zero values must be supplied by the parent program for the

appropriate arrays. It is seen that the parent program must calculate

the stress normal to the plane of the body (i.e., az).

As described to this point, subroutine CLAY provides an incremental

relationship between the strain increment and the effective stress

increment. (Of course, for ideal drained conditions total and effective

stresses are identical). If CLAY is to be incorporated into a parent

0 finite element program which only requires this relationship, then no
further considerations are needed. For such an application the "call

parameters" KIND, U and OLTAU are assigned values of 0, 0.0 and 0.0

S respectively, and the material property GAMMA is ignored. The arrays

SIG and DSIG are then effective stresses.
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Saturated soils under ideal undrained conditions (no movement of

pore fluid) behave as nearly incompressible solids and are often approx-

imated as perfectly incompressible solids. For a perfectly

incomoressible solid a conventional displacement analysis can not be

used (10). The most popular means for handling this problem are the

use of a "reformulated" analysis (i.e. a "mixed" approach) (10) ana tne

use of a penalty approximation of the incompressibility (16). The

reformulated analysis only requires a relationship between effective

stress and strain and hence the comments of the previous paragraph

apply. The penatly method in reality considers the material to be only

nearly incompressible and is dealt with in the next paragraoh.

It is often assumed that the slight compressibility of the pore

fluid and the soil particles can be modeled by the simple linear reia-

tion:

AVA = - Au
W0

Where AV/V o is the incremental change in volume, r is a constant bulk

modulus for the pore fluid-soil particles and Au is the change in pore

oressure. IThe approximation of Incompressible behavior by means of a

-penalty formulation introduces this same equation where ! is interpreted

as the penalty number (16)). Typical r will be very large compared to

:he Jeviatoric tiffness and thus the soil will behave as a "nearly

incompressible solid." The analysis of nearly incompressible solids is

notoriously difficult (10,17) and requires some special consideration.

The most commonly used schemes are the conventional displacement formu-

lation with "selected-reduced" integration (16) and the previously men-

tioned reformulated (mixed) analysis (10).

The possibility of treating r as a variable in an attempt to model par-
tially saturated conditions is beyond the scope of this study.
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When a reformulated analysis is used for a nearly incompressible

-2 material the parent program needs, in addition to the effective stress-

strain relationship, the volume change-pore pressure relationship. For

this latter purpose CLAY supplies the value of r (GAMMA of the call) to

the main program. in a reformulated analysis the pore water pressure is

directly calculated in the global finite element analysis. If it is

desired that the parent program seno and receive total stress informa-

tion (SIG and DSIG) to CLAY then it must also supply (in the call) the

appropriate pore pressure values (U and DLTAU) to CLAY. If, instead,

effective stresses are used then U and DLTAU are supplied as zero.

,Ror a conventional displacement analysis of idealized undrained con-

0ditions where the water-soil particle compressibility is included, the

2./- material stiffness is augmented by the volume compressibility due to 1,

i.e., r is added by CLAY to each member of the upper left 3 x 3 corner

of RT] and [0t] (0eAR and OTAN of the call). For such conditions the

-; call parameter KIND is set equal to 1, and SIG and DSIG are total stress

vectors. Subroutine CLAY calculates the resulting pore pressure at the

beginning of tne interval (U) and the incremental change (DLTAU) and

returns them to the main program for printing purposes.

Either of the two methods discussed for undrained conditions are

0 valid for ideal drained conditions if r is set equal to zero.

The most ;mportant class of problems is when the soil is saturateo

and there is time for flow of the pore fluid to take paice (due to non-

0 homogenous stress conditions). Such situations require the solution of

the coupled flow-stress analysis problem (a number of references are

given in (8)). Such an analysis requires the incremental strain-

. effective stress relationship which can be supplied by CLAY. The-param-

eter KIND is set equal to 0. The stress vectors (SIG and DSIG) are

'2
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either effective or total depending on whether U and DLTAU are supplied

to CLAY as zeros or as the actual pore water pressure values (as calcu-

lated by the parent program from the coupled analysis).

The subroutines making up the CLAY subroutine package are Oriefly

described below. Listing of the subroutines are given in Aopendix 1.

CLAY: This is the main subruutine of the package. The parent finite

element program must call this subroutine in the manner dis-

cussed in the previous section. The substepping integration

strategy is determined and the local iteration is conducted in

the subroutine.

BOUNO: In this subroutine the quantities 6, F,-, F,-, F,, and Wp are

computed for the form of the bounding surface consisting of a

single ellipse (further details regarding this new form of the

surface are given in Appendix III and in (18)); i.e., for

ITYPE=1 (refer to the discussion of the call to CLAY).

BOUND3: Values for the quantities listed above are computed for the

form of the bounding surface consisting of two ellipses and a

hyperbola (7); i.e., for ITYPE=3.

ELASTC: The elastic contribution to the [H array is computed in this

subroutine.S

GETH: The value of the hardening function is determined in this

subroutine. Further details regarding forms of the hardening

function are given in Appendix III.
@

INVAR: The values of the three stress invariants used in the formula-

tion are computed in this subroutine.

LODFUN: The values of the plastic modulus, Kp, and of the loading

index, L (eq. (7) in reference (7)), are computed in this sub-

routine.
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PLASTCs The plastic contribution to the ] array (eq. (5) in reference

(7)) is computed.

SKALE: In this subroutine if the stress state lies outside the bound-

ing surface, then using eqs. (13), it is scaled back to it.

EXAMPLES

A number of examples have been analyzed in order to demonstrate the

improvements in "robustness" of CLAY. The first series involved incor-

porating the new CLAY into program EVAL (7) and solving single element

examples. For those cases in which CLAY had previously exhibited poor

behavior the improvement was dramatic. In Tables 1 and 2 comparisons

are made of the results from two of these analyses for varying numbers

of global steps to reach a given final loading condition. While the

results obtained with the new CLAY for one very large global step are

not entirely accurate, they are not unreasonable as was the case with

the old version of CLAY. A careful study of the predicted pore water

pressures (u) in Table 2 for the new CLAY reveals, an interesting pheno-

menon, i.e., the convergence with increasing numbers of global incre-

ments is not entirely smooth. This behavior can be observed by

comparing the results with 2, 4 and 8 global steps. This phenomenon is

caused by the adaptive sub-stepping scheme used in the new CLAY which

can result in a greater total number of sub-steps even though the number

of global steps is less.

0 The second series involved using the old and new versions of CLAY in

* the plane strain finite elementr program SAC2 and analyzing two ideal-

ized footing problems. Properties for a typical unsaturated clay were

used for the soil. Results from one of these examples are given in

Figure 3. The improvement in predictions for large step sizes is

clearly evident.
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CONCLUSIONS

The numerical scheme used to evaluate the bounding surface model for

* 2 cohesive soils has been successfully modified In order to substantially

improve its robustness. The modifications include the introcuction of

sub-stepping when necessary and a more accurate radial return algorithm.

It was demonstrated by a number of examples that the new algorithm

is quite robust. That is for reasonably sized solution steps it gives

accurate results and for very large steps it is convergent and gives

reasonable accuracy. The one question that remains to be explored is

the impact of these modifications on the computational cost. The cost

of the material model evaluation (as compared to other costs such as

equation solution) for large finite element analyses of earth structures

must be determined.
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BOUNDING SURFACE

Projection center

* Fig. 1: Schematic illustration of a bounding
surface in general stress space
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Table 1. Triaxial Loading under Drained Conditions

total stress path:

1=240

0Number £~P £

* ~of M%____ (kPa) M%____

Increments old new old new old new
1 1.06 5.18 392 392 0.61 2.64

2 2.34 4.77 C" 1. 62 2.71

4 3.35 4.38 2.27 2.72

8 3.91 4.24 2.57 2.-72

16 4.11 4.21 2.68 2.72

32 4.17 4.19 2.1 2.72

64 4.18 4.19 2.71 2.72

______ ___________7 jj128 4.19 4.19 2.71 27
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Table 2. Triaxial Loading under Undrained Conditions
(reformulated analysis)

undrained stress oath:

10% applied

Number q P u

of (kPa) (kPa) (kPa)

Increments old new old new old new

1 2593.04 249.80 176.06 169.19 1080.28 306.08

2 1459.12 225.01 29.68 180.05 74.69 286.95

4 820.02 225.02 55.80 180.16 609.54 286.84

8 477.68 224.99 96.47 180.12 454.76 286.88

16 312.40 224.97 146.02 180.19 350.11 286.80

32 249.77 224.97 170.66 180.21 304.60 286.78

64 231.07 224.99 179.05 180.23 289.97 286.77

128 226.08 225.00 181.10 180.23 286.26 286.76
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SUBROUTINE CLAY (INC,ITNO,ITYPE,KIND,LARGE,GAMMA,PROP,STOR,SIGT4,
$ EPM,DSIGM,DEPI,UB,DLTAU,DBAR,DTAN,DSIGO)

4: Si.ubroutine to evaluate Yannis Dafalias' bounding

11 surface plasticity model for clay soils.
* Fortran 77 version, Prepared by L.R. Herrmann and V.Kaliakin

•1 at the University of California, Davis Campus. 0

• "Robust" version using radial return and sub-incrementing - 11/85

INTEGER I,J,K,IT,INC,ITNO,ITYPE,KIND,LARGE,LOIT,LOITMX,II(6)
REAL PROP(1),STOR(6),SIGTM(6),EPM(6),DSIGM(6),DEPM(6),DBAR(6,6),

$ DTAN(6,6),SIGB(6),EPB(6),DSIG(6),DEP(6),DEPT(3,3),SB(3,3),
$ SE(3,3),DLTA(3,3),DB(6,6),DSIGO(6),SIGEM(6),SIGBP(6),
$ UB,DLTAU,GAIMA,SMALL,DIL,DDIL,VOIDB,VOIDE,XIB,XIE,XJB,XJE,
$ SCUBEBSCUBEE,SIN3AB,SIN3AE,COS3AB,COS3AE,BULKB,BULKE,GB,GE,
$ XIOB,XIOE,XIL,XIBSV,XIESV,BETA,ER,REF,CONV,PRT,RTS,
$ TEMP1,TEMP2,TEMP3,TEMP4

C
DATA 11/11,22,33,12,13,23/, DLTA/1.0,3*0 ,0,1.0,3*0.0,1.0/

C----------------------------------------------------- -------------------
C A number of arbitrary limits are defined
C

SMALL:O.00O1PROP(8) I small value for stress invariant
BETALM=0.999 I limit on "beta" (how far can be out of bound)
STPMIN=1./32. + .01 1 limit of 32 sub-steps
LOITMX=5 I limit on number of local iterations
CONV=O.01 I convergence limit for local iterations

C and sub-stepping
C----------------------------------------------------------------------
C Initialize history for first increment

' ' C
* IF(INC .EQ. 1 .AND. ITNO .EQ. 1) THEN

STOR(2)=STOR(1) I size of bounding surface Io
STOR(3)=UB ! pore water pressure(for non-reformulated)
STOR(6)=1.0 I size of sub-steps

END IF
C

* C Update history for new increment
C

IF(INC .GT. 1 .AND. ITNO .EQ. 1) THEN
STOR(1)=STOR(2) I size.of bounding surface Io
STOR(3)=STOR(4) I pore water pressure(for non-reformulated)
STOR(6)=1.0 I size of sub-steps

* END IF
C
C Convert from total stress formulation to effective stress

%: C
GAMMA=PROP(6) I bulk modulus for water & soil particles

S 34
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IF(KIND .EQ. 1) THEN ! unreformulated analysis
UB=STOR(3)
DLTAU=GAMMA*(DEPM(1)+DEPM(2)+DEP14(3)) !change in pore pressure
STOR(4)=UB + DLTAU ! store pore press. (unreformulated analys)

DO 5 1=1,3 ! remove stiffness due to gamma
DO 4 J=1,3

-] DBAR(I,J)=DBAR(I,J) - GAMA

4 CONTINUE
5 CONTINUE
ENDIF
DO 10 I:1,3 I convert to effective stresses

SIGEM(I)=SIGTM(I) - UB

SIGBP(I):SIGEM(I) ! initial guess of stress for end
SIGEM(I+3):SIGTM(I+3) I of increment
SIGBP(I-3):SIGEM(I+3)

10 CONTINUE
* C

C Calculate the initial estimate for the incrementai stress
C

DO 30 I=1,6
TEMP=O.O
DO 20 J=1,6

TEMP:TEMP + DBAR(I,J)*DEPM(J)

4 4 20 CONTINUE
DSIGM(I):TEMP

C 30 CONTINUE

*) RTS=STOR(6) I recall sub-step size used in previous iteration
C

40 CONTINUE I return point when change sub-step size

C Transfer stress ,strain and pore water pressure to local arrays so
C as not to disturb the values brought in froa the parent program
C

* DO 100 I=1,6
SIGB(I)=SIGEM(I)

- DSIG(I)=DSIGM(I)*RTS
\ " EPB(1)=EPM(I)

DEP(I):DEPM(I)*RTS
'" DSIGO(I)=O.O

* DO 50 J:1,6
DBAR(I.J):O.0
DTAN(I.J)=O.O

50 CONTINUE
100 CONTINUE

C
C Determine 3-dimensional incremental properties.
C

FACTOR=0.0 I Tangent properties at start of increment
XIOB:STOR(1)
CALL INVAR (FACTOR,STOR,SIGB,DSIG,EPB,DEP,DEPT,VOIDB,LARGE,
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$ SMALL,XIB,XJB,DIL,DDIL,SB,SCUBEB,SIN3AB,COS3AB,

XIBSV=X(IB Isave unsealed value for i'indin& change in lo
CALL ELASTC (PROP,VOIDB,XIB,DB,BULKB,GB)
CALL ?LASTC (ITYPE, ?ROP, DEPT. VOIDB, "LUB, XIJB, XIOB, DDIL. 3D, 2 CUBEB,

$ SIN3AB,COS3AB,DB,BULKB,GB,DLTA,II,INC,ITNO,BETA)
C

C fstress at start of increment outside of bound wove it DacK
C and calculate stress correction vector
C

IF(BETA .LT. 1.0) THEN
DO 200 I=1,3

DSIGO(I)=-(1.0 - BETA)*(SIGB(I) - XIB*PROP(14)/3.0)
SIGB(I) =SIGB(I) + DSIGOCI)
DSIGO(I+3)=-(1.0 - BETA)*SIGB(I+3)
31GB(1+i3) =-SIGB(I+3) -.DSIGO(I+3)

200 CONTINUE
* END IF

C
C Sub-incrementing (if needed) integration loop over solution step

"4C

PRT=0.0

C
300 CONTINUE ISut-incrementing loop

C
BETAL=0.0 I initialize memory for beta

DO 325 LOIT=1,LOITMX I Local iteration on stress sub-increment

FACR1OITnetpoete tedo u-nrmn

CALL INVAR (FACTOR,STOR,SIGB,DSIG,EPB,DEP,DEPT,VOIDE,LARGE,
$ SMALL,XIE,XJE,DIL,DDIL,SE,SCUBEE,SIN3AE,COS3AE,
$ DLTA,1I)
XIESV=XIE I save unsealed value for finding change in lo

c
CALL ELASTC (PROP,VOIDE,XIE,DTAN,BULCE,GE)

* C

PrXIL=PR0P(7) I calculate size of bounding surface
TE1MP1=1.0/(PROP(1) - PROP(2))
TE34P2=(XIESV - XIBSV)/3.D
IFCXIQB .GE. AIM) THEN

XIOE=XIOB*EXP(TEMP1*0.5*( (VOIDB + VOIDE)*DDIL
*$ - (VOIDB/BULKB + V0IDE/BULKE)*TEMP2))

ELSE
XIOE=XIOB + TEM-P 1 XIL0. 5*( (VOIDE+VOIDB) *DDIL

$ - (VOIDB/BULKB + VOIDE/BULKE)*TEMP2)
END IF
CALL PLASTC (ITYPE,PROP,DEPT,VOIDE,XIE,XJE,XI0E,DDIL,SE,SCUBEE,

* $ SIN3AE,COS3AE,DTAN,BULKE,GE,DLTA,II,INC,ITNO,BETA)
C

DO 320 I=1,6 I estimate of stress change over sub-increment
TEMP=0.0
DO 310 J=1,6

* 36



TEMP=TEMP + 0.50(DB(I,J) + DTANCIgJ))*DEP(J)
310 CONTINUE

DSIGCI)mTEM4P
320 CONTINUE I check convergence

IF(ABS(BETA-BETAL )/MAX(BETAL,BETA) .LT. CONV) GOTO 326
BETAL=BETA I update memory of beta

325 CONTINUE
326 CONTINUE

C
C Check to see if sub-incrementing is sufficiently fine
C

IF(BETA .LT. BETALM .AND. RTS .GT. STPMIN) THEN

BTS=RTS'0.5 I halve the interval
COT 4 tr vro h tpwt mle u-tp
COT 01satoe nte tpwt mle u-tp

EN I
*~~~~~~~N IF=R T Iudt ten fsbse

BULKB:BUL.KudaeEt ndofsu-se
BUIKSVBXIE
XIBS=XIES
IB:IE

VIB=XIE
C IBXO

-J DO1100Izl,
DO BI)SGBI 40 DI=G,6
EPB(I) =EPB(I) + DP(I)
DO(I 390 (I +J=1,6I

DBAR(I,J)=DBAR(I,J) + 0.5*(DB(I,J) + DTAN(I,J))*RTS

390 CONTINUE
4100 CONTINUE

C
IF(PRT .LT. 0.99) GOTO 300 1 solution increment not yet complete

C
*C Check to see if sub-stepping is sufficiently fine to give

C accurate stress predictionsI C ER=0.0
REF=0. 0

N DO 4150 I=1,6
* ER=ER + ABS(SIGBCI) - SIGBP(I))

REF=REF + ABS(SIGB(I))
SIGBP(I)=SIGB(I) I remember stress with previous

4150 CONTINUE I step size
IF(ER/REF .GT. CONV .AND. RTS .GT. STPMIN) *THEN

RTS=RTS*O.5
*GOTO 40 I start over on the step, only with

END IF *I smaller sub-steps
IF(BETA .LT. 1.0)WRITE(4,')'ITNO=',ITNO,'BETA=',BETA

C
STOR(2:XIOE I store size of bounding surface
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STOR(6)=RTS I store sub-step size

C
C Calculate incremental stress and return it to the main program
C

DO 500 I=I,6 ! stress increment
DSIGM(I)=SIGB(I) - SIGEM(I)

500 CONTINUE
C
C Conversion from effective stress to total stress
C

IF(KIND .EQ. 1) THEN I for non-reformulated analysis
DO 560 I=1,3 I add in stiffness due to gamma

DO 555 J=1,3
DBAR(I,J)=DBAR(I,J) + GAMMA
DTAN(I,J)=DTAN(I,J) + GAMMA

555 CONTINUE
560 CONTINUE

* END IF
DO 600 I=1,3 ! add pore pressure to effective stress

DSIGM(I)=DSIGM(I)+DLTAU
600 CONTINUE

RETURN
END
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SUBROUTINE INVAR (FACTOR, STOR,SIG,DSIG,EPB,DEP,DEPT ,VOID ,LARGE,

$ SM4ALL,XI,XJ,DIL,DDIL,S,SCUBE,SI13A,COS3A,
DLTA,11)

C
C Subroutine to compute values of invariants
C

INTEGER I,J,K,N,IK,LARGE,1T(l)
REAL STOR(6),SIGC6),DSIG(6),SPBC6),DEP(6),DEPT(3,3),

$S(3,3) ,DLTA(3,3) ,VOID,SI4ALL,XI,XJ,DIL,DDIL,SCIJBE,ZIN3A,
$ COS3A,ARB,FACTOR,TEMP1
PARAMETER (yes=1)
DATA ARB/1000.0/

C
DIL=0.0
DDIL=O.O
DO 20 1=1,3

DIL =DIL + EPB(I)
* DDIL=DDIL +DEP(I)

20 CONTINUE
XI=0.O
XJ=0.0
SCUBE=O.O
SIN3A= 0.0

C Calculate first stress invariant
C

DO 100 I=1,3
XI=XI + SIG(I) + FACTOR*DSIG(I)

100 CONTINUE
C

VOID=1.O + STOR(5)
!F(LARGE .EQ. yes)

$ VOID=VOID*EXP(-DIL - FACTOR*DDIL)
C
C Change matrix components to tensor components;

*C calculate deviatoric stresses.
C

DO 200 N=1,6
1=11(N)110
J=HOD(II(N), 10)
S(I,J)=SIG(N) +FACTOR*DSIG(N) - XIODLTA(I,J)/3.0

* S(J,I):S(I,J)
DEPT(I,J)=DEP(N)4(1.0 + DLTA(I,J))*O.5
DEPT(J,I)=DEPT(I,J)

* 200 CONTINUE
C
C Avoid near zero value of the first stress invariant

* . C

IF(ABS(XI) .LE. SMALL) THEN
TEMP1=SIGN(1 .O,XI)
XI=SMALL*TEMP1

END IF
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C
C Compute the square root of~ the second deviatoric stress invariant

C as well as the third deviatoric stress invariant
C

DO 300 1=1,3
DO 300 J=1,3

DO 300 K=1,3
SCUBE=SCUBE + S(I,J)*S(J,K)*S(K,I)

300 CONTINUE
SCUBE=SCUBE/3.0

C
C Arbitrary check to avoid excessively small values of J
C

XJ=SQRT(0.5*XJ)
IF(XvJ'ARB .LT. XI) XJ=0.0

S C
C Compute the sine and cosine of three times the "Lode" angle
C

IF(XJ .GT. SMALL) SIN3A=1 .5'SQRTC3.0)'SCUBE/(XJ'XJ*XJ)
IF(SIN3A .GT. 1.0) SIN3A= 1.0
IF(SIN3A .LT. -1.0) SIN3A=-1.0
COS3A=SQRT(1.0 - SIN3A*SIN3A)

RETURN
END
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SUBROUTINE ELASTC (PROP,VOID,XI,D,BULK,G)
C

INTEGER I,J
REAL PROP(1),D(6,6),VOID,XI,XIL,BULK,G,CONST1,CONST2,TE4P1

C
C Calculate the elastic bulk and (if necessary) shear moduli
C

XIL=PROP(7)
BULK=VOID/(3.O'PROP(2))*(MAX(XI,XIL))
IF(PROP(5) .GT. 0.5) THEN I shear modulus is input

G=PROP(5)
ELSE

TEMP1=1.5(I.0 - 2.0*PROP(5))/(1.0 + PROP(5)) I Poisson's ratio
G=TEMP1*BULK I is input

END IF
C
C Calculate elastic portion of the incremental properties

* C
4 CONST1=BULK + G/0.75

CONST2=BULK - G/1.50
C

DO 100 I=1,6 I initialize the D array
DO 100 J=I,6

D(I,J)=O.O
D(J,I)=O.0

100 CONTINUE
DO 200 I=1,3 1 load up the diagonal

D(I,I)=CONST1 I elements
D(I+3,I 3)=G

200 CONTINUE
D(1,2)=CONST2 I load up the nonzero
D(1,3)=CONST2 I off-diagonai elements
D(2,3)=CONST2
D(2,1)=CONST2
D(3,1)=CONST2

* D(3,2)=CONST2
C

RETURN
END
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SUBROUTINE PLASTC (ITYPE, PROP,DEPT,VOID,XI ,XJ ,XIO,DDIL,S,SCUBE,
$ SIN3A,COS3A,D,BULK,G,DLTA,11,INC,ITNO,BETAS)

C
INTEGER I,ITYPE,J,X,L,i4,N,LL,LFLAG,II(l)
REAL ALFUN, CV,RT,SINV
REAL PROP(l),DEPTC3,3),S(3,3),D(6,6),DLTA(3,3),VOID,XI,
$ XJ,XIO,DDIL,SCUBE,SIN3A, COS3A,BUL.K,G,XKP ,-KPBAR,BETA,

$ DBETA,DFI,DFJ,DFAL,DFJJ,XN,R,A,H1,TEMP,TEMP1,TEMP2,
$ TEMP3,TEMP4,TE-'iP5,TEMP6 ,TEM4P7,BETAS

C
ALFUNCCV,RT,SINV)=2.0'RT'CV/(1.0 + RT - (1.0 - RT)*SINV)

C
XN=ALFUN(PROP(3), PROP(II),SIN3A) I compute model parameters that

H1=ALFUN(PROP(17),PROP(18),SIN3A) I are function of Lode angle

C Calculate bounding surface parameters

*IF(ITYPE -SQ. 3) THEN
R=ALFUN(PROP(9), PROP(12),SIN3A)
A=ALFUN(PROP( 10) ,PROP(13) ,SIN3A)
CALL BOUND3 (PROP,S,XN,R,A,VOID,XI,XJ,XIO,SCUBE,XKPBAR,DFI,

$ DFJ ,DFJJ ,DFAL,BETA,BETAS)
ELSE

CALL BOUNDI (PROP,S,XN,VOID,XI,XJ,XI6,SCUBE,XKPBAR,DFI,DFJ,
$ DFJJ,DFAL,BETA,BETAS)

END IF

IF(BETAS .LT. 1.0) CALL ELASTC (PROP,VOID,XI,D,BULK,G)
DBETA=BETA - 1.0
IF(DBETA .LT. 0.0) DBETA=0.0

C
C Check for elastic zone
C

TEMP1=BETA - DBETAIPROP(15)
4 IF(TEHP1 .GT. 0.0) THEN
* LFLAG=1

C
C Calculate the plastic modulus and loading function
C

CALL LODFUN (ITYPE,PROP,DEPT,XNI,H1 ,XI,XJ,XIO,DDIL,S,SCUBE,
$ COS3A ,BULK,G,XKP,XKPBAR, VOID ,DBETA,TEM.P1 ,DFI,

*$ DFJ,DFJJ,DFAL,LFLAG)
ELSE

LFLAG0O
END IF

C
C Calculate plastic portion of the incremental properties

* C
IF(LFLAG NE. 0) THEN

TEMP3=3. 0'BULK*DFI
TEMP4=G*DFJJ
TEMP5=SQRT(3. 0 )G*DFAL
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TEMP6=XKP +~ 9.0*BULKODFI*DFI + G'DFJ*DFJ
$+ G*(DFAL*CO33A)*'(DFAL'COS3A)

1 TEMP7=XJ*XJ
DO 200 M=1,6

J=MOD(II (M), 10)
DO 200 fl=m,6

* K=IICN)/1O
* L=MOD(II(N) ,10)

C
TE14P=0. 0
TEMP 1=0.0
TEMP2=0.0
IF(TEMP7*TEHP7 .NE. 0.0) THEN

DO 100 LL=1,3
TEMP1=TEMP1 + S(I,LL)*S'(LL,J)
TEMP2=TEMP2 +S(K,LL)'S(LL,L)

0100 CONTINUE
TEMP1=TEMP5*((TEMP1-1 .5'SCUBE*S(I,J)/TEM4P7)/TEM-P7

* -DLTA(I,J)/1.5)
TEMP2=TEMP5*((TEMP2-1 .5*SCUBE*S(K,L)/TEM4P7)/TEMP7

* -DLTA(K,L)/1.5)
END IF
TEHP=(TEMP3*DLTA(I,J) +4 TEMPJ4*S(Ii) + TEMPI)

$ *(TEI4P3*DLTA(K,L) + TEMP4*S(K,L) + TEMP2)/TEMP6
D(M,N)=D(M,X) - TEMP

200 CONTINUE
END IF
RETURNI
END
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SUBROUTINE BOUNDi (PROP,S,XNI,VOID ,XI,XJ ,XIO,SCUBE,XXPBAR,DFI ,DFJ,
$ DFJJ,DFAL,BETA,BETAS)

C
C Subroutine to evaluate relationship of current stress state

C to the bounding surface
C (the latter consisting of a single ellipse)
C

REAL DFUN,RT, FUN, FUNC
REAL PROP( ) ,VOID,XI,XJ,XIO,XIC,XIL,XIBAR,XJBAR,XKPBAR,BETA,

$ GAM,THETA,DFI,DFJ,DFJJ,DFAL,XN,DAL,R,C,ARB,BIG,S4ALL,
$ TEMP,TEMP1 ,TEMP2,TE4P3,TEMPA4,TEM4P5,SCUBE,BETAS,S(3,3)

DATA ARB/O.001/ ,BIG/1.OE+20/ ,SMALL/i OE-20/
DFUN(FUN,RT,FUNC)=FUN*FUN'(1.0 - RT)/(2.O'RTOFUNC)

C
DNAL=DFUl(XN,PflOP(4) ,PROP(3))
R=PROP(9)

0 C=PROP(14)
C

xIC=xIO*C
TEHP1=XI - XIC
IF(ABS(TEMP1) .LT. ARB) TEMP1=ARB
TEMP2=C - 1.0/Rl
TEMP3=TEM4P1*TEMP2
TEMPII=C*(C - 2.0/fl)
TE24P5=TEMP1*TEMPl + (Hi - 1.0)0XJ/XN*(R -1.0)'XJ/XN

C
BETA=XIO'(-TEMP3+SQRT(TEMP3TMP3-TEMP5(TEMPI+(2. 0-R)/R)))

V$ /TEMP5
C
C Check if stress point is outside bound and if so scale back to it
C

CALL SKALE (PROP,S,XI,XJ,XI0,SCUBE,BETA,BETAS)
C
C Compute derivatives of the bounding surface w.r.t. invariants

*C and the value of the "bounding" plastic modulus
C

XIBAR=BETA*(XI - XIC) + XIC
IF(XIBAR .EQ. 0.0) XIBAR=SALL
XJBAR=BETA*XJ
GAM=XIBAR/XIO

* THETA=XJBAR/XIBAR
XIL=PROP(7
TEMP=12.0'VOID/(PROP(l) - PROP(2))0 (MAX(XIO,XIL))*XIO0XIO

C
DFI =2.0*X10(GAM - 1.0/R)
DFJJ=2.OOBETA(l - 1.0)/XN'(R - 1.O)/XN

* DFJ =DFJJOXJ
DFAL=-6.0*XJBAR*(R - 1.0)*(R - 1.0)*DNAL/(XNOXN*XN)
XKPBAR=TEMPOCGAM - 1.0/R)O(GAM + R - 2.0)/fl
RETURN
END
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SUBROUTINE BOUND3 (PROP,S,XN,R,A,VOID,XI,XJ,XIO,SCUBE,
$ XKPBAR,DFI,DFJ ,DFJJ ,DFAL,BETA ,BETAS)

C
C Subroutine to evaluate relationship of current stress state
C to the bounding surface
C (the latter consisting of two ellipses and a hyperbola)
C

INTEGER IZONE
REAL DFUN,FUN,FUNC
REAL PROP(1 ),VOID,X,XI,XJ,XIO,XIL,XKPBAR,BETA,BETAS,DFI,DFJ,DFJJ,
$DFAL,XIC,XNI,DNAL,R,DRAL,A,DAAL,Y,C,ARB,BIG,SMALL,T,Q,QC,QO,
$FOP,XJO,BT, RHO,XIBAR,THETA,PSI,GAM,DYSAL,DFOPAL,DJOAL,DBTAL,

$ DRHOAL,TEMP,TEMP1 ,TEMP2 ,TEMP3,TEMP4~,TEMP5 ,TEMP6 ,TE4P7,TEMP8
C

DATA ARB/0. 001/, BIG/i . E+20/, SZALL/ 1 .0-20/
DFUN(FUN,RT,FUNC)=FUN*FUN*(1.0 - RT)/(2.0'RT*FUNC)

C
* DNAL=DFUN(XN,PROP(4) ,PROP(3))

DRAL=DFUN(R,PR0P( 12) ,PROP(9))
DAAL=DFUN(A,PR0P(13),PR0P(10))
Y=R*A/XN
C=PROPC 14)
xIc=xIOOc

C
C Shift projection point

N C

TEZ4P1=XI - XIC
IF(ABS(TEMP1) .LT. ARB) TEMP1=ARB
TEHP2=C - 1.0/fl
TEMP3=TEMP1 'TEMP2
TEMP4f=C*(C - 2.0/fl)
Q =XJ/TEIAP1
QC=XN/(1.0 - R'C)
IF(C .NE. 0.0) THEN

QO=XNO(SQRT(l.0 + Y*Y) - (1.0 + Y))R/C
* ELSE

QO=-BIG
END IF

C
IF(XJ .EQ. 0.0) THEN

IF(TEM4P1 .GT. 0.0) THEN
* IZONE: 1

ELSE
IZONE=3

END IF
ELSE IF(C .GE. 1.0/fl) THEN

IF(Q GQE. 0.0 .OR. Q .LE. QC) THEN
* IZONE=1

ELSE IF(Q .GE. QO) THEN
IZONE=3

ELSE
IZONE=2
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END IF
ELSE

IF(Q .GE. QC) THEN
IZONE=2

ELSE IF(Q .GE. 0.0) THEN
IZONE: 1

ELSE .tF(Q UL. QO) THEN
IZONE=2

ELSE
IZONE=3

END IF
END IF
IF(IZONE .EQ. 1) THEN

C
C Projection on ellipse 1

TEMP5=TEMP10TEMP1 + ((H - 1.0)'XJ/XN)"*2
BETA=XI0'(-TEMP3.SQRT(TEMIP3*TMP3-TEMP5(TE-P4+(2. 0-fl)/H)))

$ /TE14P5
ELSE IF(IZONE .EQ. 2) THEN

C
C Projection on hyperbola
C

TEMP5=TEMP4I - 2.0§A/R/XN
TEMP6XJ*(1.0/R + A/XN)/XN
TEMP7=TE24P3 + TEMP6
TEMP8=TEMP10TEMP1 - (XJ/XN)*(XJ/XN)
BETA=-O .5*XIOTEMP5/TEMP7

IF(TEMP8 .NE. 0.0)
$ BETA=XIOO(-TLEMP7 + SQRT(TEIIP7'TEMP7 TEMP8*TEMP5) )/TEMP8

ELSE
C
C Projecton on ellipse 2
C

T:PROP(11)
TEMP5=SQRT(1.0 + Y*Y)
FOP=1XN/TEMP5
XJO=A*(1.O + Y - TEMP5)/Y
BT=T*(XJO - T*FOPj/(XJO - 2.0'T*F0P)
RHO=(BT - T)/FOP/XJO
TEMP6=T - BIT + C

* TEMPT :TEMP 10TEMP6
TEMP8=TEMP1*TEM1P1 + RH0*XJ*XJ
BETA:XIO' (-TEMP7+SQRT(TEMP7*TE4P7

$ -TEMP8'(TEMP6 0 TEMP6 - BT*BT)) )/TEMP8
END IF

C
*C Check to see if state point is on outside the surface, and if so,

C scale it back to the surface.
C

CALL SKALE (PROP,S,XI,XJ ,XIO,SCUBE,BETA,BETAS)
C
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C Compute derivatives of the bounding surface w.r.t. invariants
C and the value of the "bounding" Plastic modulus for the

C appropriate zone.
C

XIBAR=BETA*(XIr - XXC) +XIC
IF(XIBAR .EQ. 0.0) XIBAR=SZ4ALL
GAM=XIBAR/ XIO
THETA=BETA'XJ/XIBAR
X=THETA/XN
XIL=PROP (7)
TEMP=12.00VOID/I(PROP(1 - PROP(2))'XIO'XIO'(M4AX(XIO,XIL))

C
IF(IZONE .EQ. 1) THEN

C
C Normal consolidation zone (ellipse 1)
C

PSI:Y/((R - 1.0)'(R - 1.0))
* TEMP5:R*(1.0 +. X*X + R*(R - 2.0)*X*X)

DFI=2.0*XIO*(GAM - 1.0/R)*PSI
DFJJ=2.0OXIOOGAMO( (H - 1 .0)/XN)"*2*PSIOBETA/XIBAR
DFJ =DFJJ*XJ

.4XKPBAR=TEMPO(GAM - 1.0/R)*(GAM + R - 2.0)QPSI*PSI/R
DFAL=PSI*6.0'(R-1 .0)'THETA*GAM'XI 0 (((R-1.0)/(R'R'

$ (2.0/R-GAM-1.0)) + 1.0)'DRAL - (R-1.0)*DNAL/XN)/CXN*XN)
RETURN

ELSE IF(IZONE .EQ. 2) THEN
C
C Overconsolidated zone (hyperbola)
C

TE1MP5=1.0 - X001.0 + Y)
DFI=2.O*XIO*(GAM - 1.0/fl)
DFJ=2.0*XI0O((1.O +~ Y)/R - X*GAM4)/XN
DFJJ=DFJ/XJ
XKPBAR=TEMPO(GAM - 1.0/R)O(TEMP5*GAM + 2.00A/XN)/R
DFALs6 . OXIO'(DNALO(THETAGAM/XN-1 .0/R+A/ (R*THETA*GAM4)

* $ -2.OtA/XN)/(XN0 XN)+DRAL'C1 .0/THETA-I .0/XN+A/(XN0 THETAGA4))
$ /(R*R) + DAAL'(1.0/XN - 1.0/(THETA*GAM*R))/XN)

RETURN
ELSE

C
C Tension zone (ellipse 2)

* C
PSI=1.0/(R*(BT - T))
DFI=2.0*PSI*XI0*(GAM + T - BT)
DFJJ:2. OPSIXIOGAMRHOBETA/XIBAR
DFJ=DFJJOXJ
XIPBAR=TEPPSI'PSI'(GAM+T-BT)'(GAMC(BT-T) + TO(2. 0'BT-T))

* DYSAL=Y* (DEAL/H + DAAL/A - DNAL/XN)
DFOPAL=FOP*(DNAL/XN - YODYSAL/(1.0 +4 YOY))
DJOAL=XJOO(DAAL/A - DYSAL/Y) + AO(1.0/Y - FOP/XN)DYSAL
DBTAL=( (T-BT)ODJOAL -(T-2. 0'BT)'TDFOPAL)/ (XJO-2 .0OFOP)
DRHOAL=DBTAL/FOP/XJO -RHOO(DFOPAL/FOP +~ DJOAL/XJO)
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DFAL=3. 0'PSI'XIO*THETA'GAM0 (DRHOAL +2. O*RHO'DBTAL
/(T+GAM-2.0'BT))

RIETURN
END IF
END

SUBROUTINE LODFUN (ITYPE, PROP,DEPT ,XN ,H1 ,&I ,XJ ,XIO ,DDIL,S, SCUBE,

$ COS3A IBULK, G,XKP ,X&KPBAR,V0ID ,DBETA ,DEIIOM,DFI,
$ DFJ ,DFJJ ,DFAL, LFLAG)

C
C Subroutine to calculate the plastic modulus and loading function
C

* INTEGER I,ITYPE,J,K,LFLAG
REAL PROP(l),DEPT(3,3),S(3,3),XJ,XIO,DDIL,SCUBE,C0S3A,

$ VOID ,SULK,G,XKP ,XKPBAR,DBETA ,DENOM,DFI,DFJ ,DFAL,DFJJ,XN,
$ Hl,k,XLF,SUM1,SUM2,TEMP1,TEMP2,TE1MP3,TEMP4,TEM4P5,TEMP6

* C
C Get value of hardening function and compute the plastic miodulus
C

CALL GETH (ITYPE,PROP,XN,H1,H,XI,XJ,XIO,DFI,DFJ,VOID)
XKP=XKPBAR + H*DBETA/DENOM

C
SUM2=O.0 I compute the value off the loading

function
TEI4P1=0.0
TEMP2=3.O'BULK*DFI
TEMP3=G*DFJJ
TEMP4=SQRT (3.0) 'G'DFAL
TE14P5=XKP + 9.0*BULK*DFI*DFI +G*DFJ*DFJ

$ TM6X*J + G*(DFAL'COS3A)*(DFAL*C0S3A)

IF(TEMP6 .NE. 0.0) THEN
DO 200 I=1,3

DO 200 J=1,3
SUM1=O.0
DO 100 K=1,3

SUH1=SUN1 ,-S(I,K)'S(K,J)

100 CONTINUE

TEMP1=TEMP1 +(SUMi - 1.5'SCUBE*S(I,J)/TEMP6)
$ *DEPT(I,J)/TEMP6

* SUM2=SUM2 + S(I,J)*DEPT(I,J)
200 CONTINUE

TEMP1=TEMP1 - DDIL/1.5
END IF
XLF=(TEHP2*DDIL + TEMP3*SU142 + TEMP4I*TEMP1 )/TEMP5

C Check for unloading or neutral loading

IF(XLF .LE. 0.0) LFLAG=0
RETURN
END
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SUBROUTINE GETH (ITYPE,PROP,XN,H1 ,H,XI,XJ,XIO,DFI,DFJ,VOID)

C
C Subroutine to compute the hardening ffunction H
C

INTEGER !TYPE
REAL PROP(1 ),XN,H,H1 ,H2,XI,XJ,XIO,DFI,DFJ,LJNTNOR,R,SM,Z,

VOID,PATM,VAL1 ,VAL2,TEMP1 ,TEM4P2,TEMP3,TEM-4P4
C

PATM=PROP(8)
R =PROP(9)
SM=PROP(16)
H2=PROP(19)
VALl :PROP(20) I first experimental const.

VAL2=PROP(21) I second experimental const.

Z=XJ*R/ (XN'XIO)
TEMP 1 Z*SM

* TEMP2=9.0ODFI*DFI + DFJ*DFJ/3.0
UNTNOR=3. 0'DFI/SQRT(TEIP2)
TEMP3=SIGN( 1.0,ULNTNOR)
IF(VAL1 .LE. 0.0 .OR. ITYPE .EQ. 3) THEN

TEMP4=1 .0 I constant h desired
ELSE

TEMP4=O.5*(VALl + TEMP3*((ABS(UNTNOR))*'(1.0/VAL2)))
END IF

C
H=VOID/ (PROP( 1) - PROP(2) )*PATM*TE14P2*TEMPI'

$ (TEMP16 H1 + (1.0 -TEMP1)'H2)

RETURN
END
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SUBROUTINE SKALE (PROP,S,XI,XJ,XIO,SCUBE,BETA,BETAS)
C

* C Subroutine to check if the current stress state lies outside che
C bounding surface, and if so, scale it back to the surface.

REAL PROP(l),S(3,3),BETA,BETAS,XI,XJ,SCUBE,C,XIC,XIO
C

C=PROP(14)
" XIC=C*XIO

BETAS:BETA
IF(BETA .LT. 1.0) THEN

XJ=XJ*BETA
SCUBE=SCUBE*BETA*BETA*BETA
XI=BETA*(XI - XIC)+XIC
DO 200 I=1,3

DO 100 J=1,3
S(I,J)=BETA*S(I,J)

* 100 CONTINUE
200 CONTINUE

BETA1.0
ENDIF
RETURN
END
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SUBROUTINE RPROP (ITYPE,PROP)

C This subroutine reads in and modifies the parameters required
C by the bounding surface plaztiucity uiodei for cohesive soils.
C

INTEGER I,ITYPE
REAL PROP(1)
READ(5,4) ITYPE
IF(ITYPE .EQ. 1) THEN

READ(5,*) (PROP(I),Izl ,9),(PROP(I),1=124,21)
ELSE I ITYPE 3

READ(5,*) (PROP(I),Izl1,19)
END IF

C
WRITE(6,900) PROP(1),PROP(3),PROP(2),PROP(4)
IF(PROP(5) .LT. 0.5) THENI

WRITE(6,902) PROP(5)
ELSE

WRITE(6,904) PROP(5)
* END 1F

WRITE(6,906) PROP(7),PROP(8)
IF(ITYPE .EQ. 1) THEN

WRITEC6,908) PROPC9),PROP(1A4),PROP(15)
ELSE

WRITE(6,909) PROP(9) ,PROP(12),PROP(10),PROP(13)
CALL TCHECK (PROP)
WRITE(6,911) PROP(11 ),PROP(14),PROP(15)

END IF
C

WrRITE(6,910) PROP(16),PROP(19) ,PROP( 17) ,PROP(18)
IF(PROP(20) .GT. 0.0) THEN

WHITE(6,912) PROP(20),PROP(21)
ELSE

WRITE(6 , 9 1i1)
END IF

C
C Convert parameters from triaxial to invariant stress space
C

PROP(3)=PROP(3)/SQRTC27. 0)
PR0P(7)=PROP(7)*3.0
RETURN

C
900 FORMAT(13X, 'TRADITIONAL CLAY MATERIAL PARAMETERS:',/, 13X,37( '-'),

* /,IOX,'Lambda =',F7.3,17X,'Mc =',F7.3,/,
1OX,'Kappa =',F7.3,14X1Me/Mc =',F7.3,/)

902 FORMAT(19X,'Poisson''s ratio =',F7.3)
904 FORMAT(18X,'Shear modulus, G =',1PE10.3)
906 FORMAT(11X,'Transitional stress, P1 =',1PE10.3,/,

$ 1IX,'Atmospheric pressure =',1PE10.3,//)
908 FORM4AT( 5X,'Bounding surface shape parameter, R =',F7.3,/,

0 $ 1OX,'Projection center parameter, C =',F7.3,/,
12X,'Elastic nucleus parameter, S =',F7.3,/)

99FORIIAT(15X,'BOUNDING SURFACE SHAPE PARAMETERS:',/,15X,34('-'),
$ /,14IX,'Rc =',F7.3,14UC,1Re/Rc =',F7.3,/,
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$14X,'Ac =',F7.3,114X,'Ae/Ac =',F7.3)
910 :FOBI!T(21X!HARDENING PAAIETERS: I,/,21X,21C('-1)/

1 5X,lm =',F7.3,17X,'H2 =',F7.3,/,
14X,'Ha z',F7.3,'14X,'He/Hc =' ,F7.3)

$ 14X,'Projection center parameter, C =',F7.3,/,
14X,l M1astic ilucleus paramercer, S =',F7.3,/)N

912 FORMAT(15X,'a =t ,F7.3,18X,'w =',F7.3'0
914 FORMAT(/,10X,3('*'),' The shape h'ardening function is -onstant
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SUBROUTINE TCHECK (PROP)
C
C This subroutine checks the value of the bounding surface shape
C parameter 'IT" and adjusts this value if it exceeds the theoretical max.
C Original version written by J.3. De Natale.
C

REAL TEMPi ,TEMP2,TEMPR,PROP(l)
YFUN(TT)=(1.0 +4 TT)*SQRT(l.Q +i TT*TT) - (1.0 +~ TT*TT)

C
C Check against theoretical limit in compression
C

TEMPi =PROP( 1)
TEHP2=PROP(9)*PROP(10 )*SQRTC27.O)/PROP(3)
TEMP2=YFUN(TEMP2)
TEI4P2=TE241P2/2. 0/PROP(9)
IF(PROP(11) .GT. TEMP2) PROP(11)=TEMP2

C
*C Check against theoretical limit in extension

C
TEMPR=PROP(9 )*ROP( 12)
TEMP2TEMPRPROP(10)*PROP(13)*SQRT27.0)/PROP(3)/PROP(I)
TEMP2=YFUNCTEMP2)
TEMP2=TEMP2/2. O/TEMPR
IF(PROP(11) .GT. TEMP2) PROP(I1)=TEMP2
IF(PROP(11) ANE. TEMPi) WRITE(6,900)

900 FORMAT Cl, X,' >> THE USER-SPECIFIED VALUE OF T EXCEEDS THE MAX',
$ ' <(<',/,12X,' PERMISSIBLE VALUE AND HAS BEEN RESET TO:',/)

RETURN
END
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APPENDIX III

Input to the RPROP Subroutine

The following quantities are read by the RPROP subroutine: (Note:

the input is free-form).

Line I: (integer)

(1 Bounding surface consists of a single
ellipse (see discussion below)

ITYPE =I

Bounding surface consists of a combi-
nation of two ellipses and a hyperbola (7)

Subsequent line(s): (all parameters are real)

K

M c
M e/Mc

V or G

r

p.

Patm

* if ITYPE 1: if ITYPE 3:

R R

c Ac

Nm Re/Rc
s T
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h c  Ae/Ac

he/hnc  c

h 2  s

a m

w hi C

he/h c
h
2

The Single Ellipse Model

Recently a form of the bounding surface model was developed in which

the surface consists of a single ellipse (further details regarding all

aspects of this new model are given in reference (18)). Although the

adoption of a single ellipse simplifies the explicit definition of the

bounding surface, (in previous applications the surface consisted of a

combination of two ellipses and a hyperbola (7)),it requires the modi-

ciation of the shape hardening function h (refer to "modification 5"

in referenced (7)). More precisely, if the single ellipse is used

instead of a "flatter" (with respect to the critical state line) hyper-

bola in the region to the left of the critical state line undesirably

high levels of J will be attained at large overconsolidation ratios.

The following hardening function is therefore used:

A [zm h 1 1 I1 7
h h m 

(a) + (l - zm)h 4 (a + sign(np )w -nj)

In the above expression n represents the component in the p-

direction of the unit normal in triaxial space; the parameters a and w

control the decrease of h (further details are given in reference (18)).
A

The inclusion of the terms in the second set of brackets renders h a
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function of the ratio n = q/p. Noting that np varies in magnitude from

+1 (along the p-axis in a positive direction) to -1 (along the p-axis in

a negative direction), the function h is seen to decrease abruptly in

value when the critical state line is crossed (i.e. when n passes

chrough zero).

if, on the other hand, a bounding surface consisting of two ellipses

and a hyperbola is specified (i.e., ITYPE = 3), the hardening function

used is (7):

= zm hl(a) + (1 - zm)h

0
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